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The Thy-Angle and g-Angle
in a Quasi-Inner Product Space

PavLE M. MILICIC

ABSTRACT. In this note we prove that in a so-called quasi-inner prod-
uct spaces, introduced a new angle (Thy-angle) and the so-called g-
angle (previously defined) have many common characteristics. Impor-
tant statements about parallelograms that apply to the Euclidean angles
in the Euclidean space are also valid for the angles in a q.i.p. space (see
Theorem 1).

1. INTRODUCTION

Let (X,|| - ||) be a seminormed space. Based an idea of I. Singer [5],
Volker Thiirey in [6] introduced a new concept of an angle between elements
x and y of X\ {0}, so-called Thy-angle (Zrpy(x,y)), as follows:
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This new angle corresponds with the Euclidean angle in the case that (X, || - ||)
already is an inner product space. In the real normed space (X,| - |),
dim X > 1, z,y # 0, for this angle we have the properties:
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(1) Zrpy(w,y) := arccos [i (‘

1) Z7hy is a continuous surjective function from [ X'\ {0})? to [0, 7],
) Ly (x,2) =0,

) éThy( ,T) =
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) (

) (=

T W N

Lrny (1, 8Yy) = Lrhy (2,Y), 1,8 > 0,

6) Lrny (—x, —y) = Ly (z, y)

7) éThy (‘737 y) + éThy ( y)
With this angle we observe here is another angle was previously defined,
which we now define.
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It is well known that in a real smooth normed space (X, || - ||), always
exists the functional
-l tyl — [l
(2) 9(z,y) := || lim ; (z,y € X)
(see | 1]).

This functional is linear in second argument and it has the following prop-
erties:

— 1zl
3) g( y))| 9(@y), g z) =[],

g (@) <llzlllyl,  (x,yeX;reR).

In an arbitrary normed space, we are in [2| define another angle, so-called
g-angle with

— arecos I &Y 9y, 2) .

and the so-called g-orthogonality vectors with
Loy < g(x,y) +9(y,2) =0,  (z,y € X\{0}.

Let us mention there that the so-called Pythagorean orthogonality vectors
defines

elpy & al® +lyl* = lz+yl*,  (z,y € X\{0}).

Also note that known the Singer orthogonality can be defined with

T
vlsy & Lrny(z,y) = 5.
A normed space (X, || -||) of property
(5) N +yl* = llz = yl* = 8lz* g (z,9) + lyl* 9 (g 2)], (x5 € X)

we call a quasi-inner product space (q.i.p space) (see [3]).
The space of sequences * is a q.i.p. space

<w=(xk), y=() €l glx,y) =z |zl (Sgnxk)yk)>,

k

but I! is not a q.i.p. space (see [3]).
In [4] we have proved that, in a q.i.p. space

rlyy e rlgy (z,y € X\{0}).

Having regard to the equality (5) comparing the definition (1) and (4) we
conclude that there is a direct link between g-angle and T hy-angle.
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T

Namely, for x,y # 0, if instead x it takes place Tl and instead y take
HyTII’ from (5) we get

1 2
1 ‘+y ‘
4[ R I
2
(6) 1 ‘w+y ‘
Al iyl ]

_ 9, y) +9(y, 7)
2|l Yyl
From this equality and (3) we conclude that

1 y |I? x y |I?
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1 ‘ v ‘y <1
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This means that in a q.i.p. spaces X can be define another angle between
vectors z,y € X\ {0} with
4]

4

i Y xr Y
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In fact in a q.i.p. space, this angle is equal to g-angle.
Knowing that

(7) Z(x,y) := arccos % [

g(rae, sy) = g(x,y)  (r;s #0)
it can be seen instead Z(z,y) the angle A(U v), where

u= = € S(X)

[ HyH
(S(X) is the unit sphere of X).
Then (6) becomes

g(u,0) + g(v,0)

1 2 2, 1 2 27
(8)  lllu+ol”+flu =l F{llu+ ol — [lu —»l]] = 5

Checking more

1 2 2
= Z[HU +olI” + [Ju —v||7],

1
= M+ ol* = flu = ol

_ glu) +g(v.u)
2

get
9) kb= a,
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i.e., for all u,v € S(X), arccos kb = arccos a.
This means that, for z,y € X\ {0}

4(‘%.7 y) = 49(1.7 y)

Although Zg4(u,v) and Zppy(u,v) are two mutually different functional
they, in a q.i.p. space, have many common characteristics.

Modeled in terms of Euclidean geometry, we adopt the following termi-
nology in normed spaces.

From now on we assume that points 0, x, y are the vertices of the trian-
gle (0,z,y) and points 0, x, y, x + y are the vertices of the parallelogram
(0,2z,y,2+y). The numbers ||z +y|, ||z — y|| are the lengths of diagonal of
this parallelogram. If ||z| = ||y||, we say that this parallelogram is a romb,
and if x 1,y we say that the parallelogram (0,z,y,z + y) is a p— rectangle.

2. MAIN RESULTS

Justification for introducing these angles in the normed spaces show,
among other things, the following Theorem 1.

Theorem 1. Let X be a q.i.p. space. The following statements are true:

a) The g-angle has properties 1)-7), similar to the Thy-angle;

b) The lengths of diagonals parallelogram (0,x,y,x+y) are equal if and
only if this parallelogram is Thy-rectangle, i.e. x Lgy or Lypy(x,y) =
7/2;

c) The diagonals of the romb (0,z,y,x + y) are Thy-orthogonal, i.e.
(z —y)Lls(z +y);

d) The parallelogram (0,z,y,xz + y) is a Thy-quadrangle if and only
if its lengths of the diagonals are equal and the diagonals are Thy-
orthogonal.

Proof. Using the properties (3) of g-functional easy to check these properties
1)-7) are valid for the g-angle.

For evidence statements b)-d) to use gender The-orthogonality of the g-
orthogonality (Lrp, = L4) since the g-orthogonality assertion is proved in
[4]. O

Following two theorems show the relationship of these two angles depend-
ing on the vectors u,v € S(X).

Theorem 2. Let X be a q.i.p. space. The following statements are true:
1. For all u,v € S(X) it is sgna = sgnb, i.e.,
sgn Zg(u,v) = sgn Lppy(u,v),
2. Lg(u,v) = Lpy(u,v) & (u+v)Lp(u —v)Vulg.

Proof.
1. Since the k£ > 0 from (9) we get sgna = sgnb.
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2. According to the definitions (1) and (4) we have (9) so
Zg(u,v) = Lrpy(u,v) © k=1V|u+v|| = |lu—2v].
If k=1 then

a=bAllu+v|P+llu—v|* =4=|(u+v)+ (u—2)]* < (ut+vLp(u—nu).
Since k > 0 it is
lu+v||=llu—v]|ea=b=0%c Ly(u,v) = Lrpy(u,v).

The interrelation of angles Zg4(u,v) and Zppy(u,v) depends on the rela-
tionship between length of diagonals of a parallelogram (0, w,v,u +v). O

Theorem 3. Let X be a q.i.p. space. The following assertion are valid:
1 If lu—v| < ||lu+v| then

Hu—i—vHQ—i—Hu—vH2>4 = Zy(u,v) < Zrpy(u,v),

u—+v|]* + [Ju—v||* <4
2. If ||lu —v|| > ||lu+v|| then
lu+ v + |lu—o|* >4
lu+ v + |lu— o] < 4

Lg(u,v) > Zrpy(u,v).

49(“7”) > éThy(ua U)7
Zg(u,v) < Zrny(u,v).

Proof.
1. Since the k£ > 1 and b > 0 according to (9) we have

a=kb>b, so arccosa < arccosb, i.e., Zy(u,v) < Lppy(u,v).

If k< 1andb>0then a = kb < b so arccosa > arccosb,
ie., Zy(u,v) > Lppy(u,v).
2. Sincek>land b<0Ogeta=kb<b = a<b,so

arccosa > arccosb & Zg(u,v) > Zrpy(u,v).

k<1lAb<0O0 = a=kb>b = a>b <&

arccosa < arccosb & Zg(u,v) < ZLrpy(u,v). O
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